Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy

Philip A Barber, Andrew M Demchuk, Jinjin Zhang, Alastair M Buchan, for the ASPECTS Study Group

Summary

Background Computed tomography (CT) must be done before thrombolytic treatment of hyperacute stroke, but the significance of early ischaemic change on CT is unclear. We tested a quantitative CT score, the Alberta Stroke Programme Early CT Score (ASPECTS).

Methods 203 consecutive patients with ischaemic stroke were treated with intravenous alteplase within 3 h of symptom onset in two North American teaching hospitals. All pretreatment CT scans were prospectively scored. The score divides the middle-cerebral-artery territory into ten regions of interest. Primary outcomes were symptomatic intracerebral haemorrhage and 3-month functional outcome. The sensitivity and specificity of ASPECTS for the primary outcomes were calculated. Logistic regression was used to test the association between the score on ASPECTS and the primary outcomes.

Findings Ischaemic changes on the baseline CT were seen in 117 (75%) of 156 treated patients with anterior-circulation ischaemia included in the analysis (23 had ischaemia in the posterior circulation and 24 were treated outside the protocol). Baseline ASPECTS value correlated inversely with the severity of stroke on the National Institutes of Health Stroke Scale (r = −0.56, p < 0.001). Baseline ASPECTS value predicted functional outcome and symptomatic intracerebral haemorrhage (p < 0.001, p = 0.012, respectively). The sensitivity of ASPECTS for functional outcome was 0.78 and specificity 0.96; the values for symptomatic intracerebral haemorrhage were 0.90 and 0.62. Agreement between observers for ASPECTS, with knowledge of the affected hemisphere, was good (κ statistic 0.71–0.89).

Interpretation This CT score is simple and reliable and identifies stroke patients unlikely to make an independent recovery despite thrombolytic treatment.

Lancet 2000; 355: 1670–74

Introduction

There is evidence that intravenous recombinant tissue plasminogen activator (alteplase) is an important treatment for acute ischaemic stroke. A systematic review of 17 clinical trials suggested that thrombolysis, though associated with an increased risk of symptomatic intracerebral haemorrhage, may increase the proportion of patients with stroke surviving and able to live independently.1 The most convincing evidence for the efficacy of alteplase comes from the National Institute of Neurological Disorders and Stroke (NINDS) study,2 which randomised patients within 3 h of stroke. However, there is uncertainty about who to treat—for instance, the elderly, patients with severe strokes, and those with early ischaemic change on computed tomography (CT).

CT in acute stroke is highly sensitive for the detection of intracerebral haemorrhage. Concern has arisen about the reliable detection of early ischaemic change on CT and of its significance in relation to functional outcome and the risk of symptomatic haemorrhage before the administration of thrombolytic therapy. The European Cooperative Acute Stroke Study (ECASS) trials identified the importance of early CT ischaemic changes in predicting benefit with intravenous thrombolysis.3,4 Patients were eligible only if there was CT ischaemia involving less than a third of the distribution territory of the middle cerebral artery. This method is not reliable, however, and even experienced stroke clinicians have difficulty in recognising and quantifying such changes by currently available methods.4 A system is needed to improve the general reading of CT scans.

The main aim of our study was to assess the validity, reliability, and usefulness of a standardised quantitative CT grading system, the Alberta Stroke Programme Early CT Score (ASPECTS), in acute anterior-circulation ischaemic stroke. We hypothesised that by quantification of early ischaemic change detected on CT scan before the administration of alteplase, outcome in terms of independence, dependence, and symptomatic intracerebral haemorrhage could be predicted. We assumed that other factors may modify the effects of ASPECTS (ie, serum glucose and age).5,6,7 Such a score, if reliable and practical, could be applied to future clinical trials to identify the most appropriate patients for interventional stroke therapy with thrombolytic or potential neuroprotective drugs.

Methods

Patients

Consecutive stroke patients at two North American teaching hospitals who met established NINDS criteria were treated within 3 h with intravenous alteplase. Only patients thought to
have anterior-circulation ischaemia (including some severe lacunar strokes), at presentation, were included in the analysis.

Procedures
Before treatment, all patients had a CT brain scan and the score on the National Institutes of Health Stroke Scale (NIHSS) was recorded by a stroke neurologist; in five cases the NIHSS score had to be extrapolated from the medical records. All the CT scans were done on fourth-generation scanners with 10 mm slice thickness without contrast enhancement. The NIHSS score was recalculated just before the follow-up 24 h CT scan. Both the baseline and 24 h NIHSS scores were done without knowledge of the results of baseline or 24 h CT scan or the clinical progress of the patient.

Stroke severity, measured by the NIHSS (an incremental scale, with higher scores indicating a more severe neurological deficit), was categorised into five groups: 0–5, 6–10, 11–15, 16–20, and more than 20. Primary outcome measures were score on the modified Rankin scale at 3 months (independence 0–2 vs dependence 3–5 and death), and symptomatic intracerebral haemorrhage. The Rankin scale score at 3 months was assessed by a stroke neurologist or nurse stroke practitioner who was not aware of the results of the baseline CT, baseline NIHSS score, or the acute clinical events.

To detect intracerebral haemorrhage, CT scans were done 24 h after the onset of stroke and when the patient's neurological state had deteriorated. A haemorrhage was classified as symptomatic if it had not been seen on a previous CT scan and there had subsequently been a decline in the neurological status.

The baseline CT scan was subsequently assessed with knowledge of the side affected but without knowledge of the baseline stroke severity, 24 h CT scan, or the clinical outcome by a panel of CT reviewers consisting of stroke neurologists (PAB, AMD, AMB) and experienced neuroradiologists (RJS, WYH, MEH) for the presence of haemorrhage, parenchymal hypoattenuation in the territories of the anterior, middle, and posterior cerebral arteries and the vertebrobasilar artery distribution, focal swelling, and a hyperdense middle-cerebral-artery sign. The 24 h scan was assessed under the same conditions. Parenchymal hypoattenuation was defined as a region of abnormally low attenuation of brain structures relative to attenuation of other parts of the same structures or of the contralateral hemisphere. Focal brain swelling was defined as any focal narrowing of the cerebrospinal-fluid space due to compression by adjacent brain structures such as effacement of the cortical sulci or ventricular compression.

The affected territory of the middle cerebral artery was graded by a systematic quantitative scoring system, ASPECTS, and according to the rule of one-third or less or more than a third of the territory affected by ischaemia,1 done at the same time. The ASPECTS value was calculated from two standard axial CT cuts, one at the level of the thalamus and basal ganglia, and one just rostral to the ganglionic structures.

As a separate part of the study, the reliability within and between observers for detection and quantification of early CT ischaemia was assessed between three pairs of clinicians: stroke neurologists (PAB, AMD), radiology trainees (JNS, DK), and experienced neuroradiologists (WYH, MEH) on a sample of 68 scans. Each clinician assessed the baseline CT scan in isolation at a viewing box initially without access to any clinical information and then at least 3 weeks later with the benefit of only the knowledge of the affected hemisphere.

Statistics
Spearman’s rank correlation coefficient was used to test the association between baseline ASPECTS value and baseline NIHSS score, ASPECTS value at 24 h, and functional outcome. A review of the data suggested that baseline ASPECTS value in two categories (<7 and >7) discriminated independence from dependence and death. Similarly, previous studies1 have suggested that more severe stroke is associated with greater risk of poor outcome and symptomatic

![Figure 1: ASPECTS study form](image)

A=anterior circulation; P=posterior circulation; C=caudate; L=lentiform; IC=internal capsule; I=insular ribbon; MCA=middle cerebral artery; M1=anterior MCA cortex; M2=MCA cortex lateral to insular ribbon; M3=posterior MCA cortex; M4, M5, and M6 are anterior, lateral, and posterior MCA territories immediately superior to M1, M2, and M3, rostral to basal ganglia.

Subcortical structures are allotted 3 points (C, L, and IC); MCA cortex is allotted 7 points (insula cortex, M1, M2, M3, M4, M5, and M6).
intraparenchymal haemorrhage, and therefore, NIHSS scores of 15 or less (less severe) and more than 15 (more severe) were used. The validity of ASPECTS (<7 vs >7), NIHSS score (<15 vs >15), and a third or less versus more than a third of middle-cerebral-artery territory were assessed by calculation of the sensitivity and specificity for functional outcome and symptomatic haemorrhage. Logistic regression was used to examine the predictive ability of ASPECTS (<7 vs >7) in terms of functional outcome (independence vs dependence and death) and symptomatic haemorrhage, in the presence of other potential risk factors that may modify the effect of ASPECTS (ie, age and serum glucose).

κ statistics\(^1\) were used to assess the clinicians’ agreement with each other for the presence of early CT ischaemic change and for the quantification of early CT ischaemia according to the one-third middle-cerebral-artery territory rule and ASPECTS. A κ value of 0 indicates agreement no better than chance, and a value of 1 indicates perfect agreement. The within-rater agreement was measured for each individual observer.

Results

Of 203 consecutive patients treated with intravenous alteplase, 23 were identified clinically to have sustained ischaemia in the posterior circulation, and 24 were treated outside the established NINDS protocol,\(^1\) and were prospectively excluded from the analysis. Four patients who presented within the 3 h treatment window were excluded from treatment on the basis that the baseline CT scan revealed ischaemic changes too extensive to treat with alteplase. At 3 months, all were dependent or had died. The main reasons for treatment to be withheld from patients presenting with cerebral ischaemia within 3 h were non-disabling or mild symptoms and rapidly improving deficit.

The final analysis included 156 patients (mean age 68 years [SD 14]; 72 women and 84 men) treated within 3 h of stroke onset with intravenous alteplase between March, 1996, and May, 1999. 117 (75%) of the 156 patients had evidence of early ischaemic change on baseline CT and 141 (90%) had such features on the 24 h scan.

Among the 154 patients with NIHSS scores at presentation, five (3·2%) had scores of 0–5, 41 (26·6%) scores of 6–10, 35 (22·7%) scores of 11–15, 41 (26·6%) scores of 16–20, and 32 (20·8%) scores above 20. In total, 31 (19·9%) of these 154 patients had intracerebral haemorrhage confirmed by the 24 h CT; in ten (6·4%) this haemorrhage was associated with neurological deterioration. For two patients, NIHSS and Rankin scores at 3 months were not available but neither had a symptomatic intracerebral haemorrhage. At 3 months, of the remaining patients, 74 (48·1%) were independent, 54 (35·1%) were dependent, and 26 (16·9%) had died.

The median baseline ASPECTS value was 8. The baseline ASPECTS correlated with the baseline NIHSS score (r=−0·56 [95% CI −0·46 to −0·78], p<0·001), the ASPECTS at 24 h (r=0·88 [0·64 to 0·94], p<0·001); functional outcome at 3 months (r=−0·69 [−0·57 to −0·75], p<0·001). A baseline ASPECTS of 7 or less sharply discriminated independence, dependence, and death at 3 months (65 patients had scores of 7 or less, and 89 had scores of more than 7; figure 2).

The sensitivity and specificity of the baseline ASPECTS value, NIHSS score, and the one-third middle-cerebral-artery rule in terms of functional outcome (independence vs dependence and death) and symptomatic intracerebral haemorrhage are shown in table 1. Because there were very few symptomatic haemorrhages, the data for ASPECTS and for the one-third middle-cerebral-artery rule were identical.

In logistic regression analysis, baseline ASPECTS value was a significant predictor of both functional outcome (odds ratio 82 [95% CI 23–290], p<0·001) and symptomatic haemorrhage (14 [2–117], p=0·012). Age (<78 vs >78 years) was a significant predictor of

Table 1: Sensitivity, specificity, and odds ratio for NIHSS score, baseline ASPECTS value, and one-third middle-cerebral-artery (MCA) rule for functional outcome and symptomatic haemorrhage

<table>
<thead>
<tr>
<th>Test</th>
<th>Functional outcome</th>
<th>Symptomatic haemorrhage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Independent (Rankin 0–2)</td>
<td>Dependent (Rankin 3–5)</td>
</tr>
<tr>
<td>NIHSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td><15 (n=81)</td>
<td>56</td>
<td>25</td>
</tr>
<tr>
<td>>15 (n=73)</td>
<td>18</td>
<td>55</td>
</tr>
<tr>
<td>ASPECTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td><7 (n=89)*</td>
<td>71</td>
<td>18</td>
</tr>
<tr>
<td>>7 (n=65)</td>
<td>3</td>
<td>62</td>
</tr>
<tr>
<td>MCA rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td><1/3 (n=89)*</td>
<td>67</td>
<td>22</td>
</tr>
<tr>
<td>>1/3 (n=65)</td>
<td>7</td>
<td>58</td>
</tr>
</tbody>
</table>

*\(p<0·01\) for symptomatic haemorrhage analysis.
ASPECTS is a predictor for both functional outcome and symptomatic haemorrhage. For patients with identical ASPECTS values, inclusion of age and serum glucose in the model further improved the predictive ability. ASPECTS has high sensitivity and specificity for both functional outcome and symptomatic intracerebral haemorrhage. For example, in an individual with an ASPECTS value of 7 or less, the risk of symptomatic intracerebral haemorrhage with alteplase is 14 times that of patients with a score greater than 7. In patients with scores above 7 the rate of symptomatic intracerebral haemorrhage is 1%, slightly higher than the frequency of symptomatic ischaemic haemorrhagic transformation in the placebo group in the NINDS trial (0·6%).

ASPECTS is simple and quick and has good between-observer reliability. However, the results of our study should not be misinterpreted as showing that patients who have an ASPECTS of 7 or less should be excluded from thrombolysis, since we cannot know how these patients would have done if they had not received treatment. Validation of this score in a randomised controlled study is needed.

This scoring method has implications for the design of future stroke trials. It also underlines the arbitrary nature of use of rigid time windows as the basis for treatment decisions. This concept is supported by the observation from ECASS II of no significant difference in outcome between patients treated at 0–3 h and at 3–6 h.4 Definition of an arbitrary treatment window ignores evidence of wide variation among individuals in potentially salvageable brain tissue.7 Future “tissue-window” studies could assess how a systematic approach to early CT ischaemic change, such as ASPECTS, can be used to redefine time windows. For instance, a patient with a persistent deficit presenting after the defined time window but with a CT scan that shows only a small area of early ischaemic change (and therefore a high ASPECTS value) might be considered for thrombolytic therapy. In addition to determining trial eligibility, the ASPECTS system has the potential to be used as a surrogate endpoint to provide objective evidence in placebo-controlled neuroprotective trials.

Table 2 shows the agreement between observers. The within-rater reliability ranged from 0·26 to 0·76 for the one-third middle-cerebral-artery rule and from 0·67 to 0·82 for ASPECTS.

Discussion

Early ischaemic changes identified on CT during the first few hours after stroke onset represent early cytotoxic oedema and possibly the development of irreversible injury.11 Attempts to assess the prognostic value of these early ischaemic changes on CT in terms of functional outcome and the risk of intracerebral haemorrhage before administration of thrombolytic therapy have had misleading results.4 Many have cited the potential superiority of diffusion-weighted magnetic resonance imaging over CT, but discrimination of salvageable from irretrievably injured brain tissue with MRI is not yet possible.12 Although diffusion-weighted magnetic resonance imaging may become the imaging method of choice, most physicians treating stroke will depend on CT because it is more accessible.

We have shown that a systematic approach to quantification of early CT ischaemic change can improve the identification of cerebral ischemia and is of prognostic value even before treatment is administered. For patients treated with alteplase, as the ASPECTS value decreases, the probabilities of dependence, death, and symptomatic intracranial haemorrhage increase. ASPECTS is a predictor for both functional outcome and symptomatic haemorrhage. For patients with identical ASPECTS values, inclusion of age and serum glucose in the model further improved the predictive ability. ASPECTS has high sensitivity and specificity for both functional outcome and symptomatic intracerebral haemorrhage. For example, in an individual with an ASPECTS value of 7 or less, the risk of symptomatic intracerebral haemorrhage with alteplase is 14 times that of patients with a score greater than 7. In patients with scores above 7 the rate of symptomatic intracerebral haemorrhage is 1%, slightly higher than the frequency of symptomatic ischaemic haemorrhagic transformation in the placebo group in the NINDS trial (0·6%).

ASPECTS is simple and quick and has good between-observer reliability. However, the results of our study should not be misinterpreted as showing that patients who have an ASPECTS of 7 or less should be excluded from thrombolysis, since we cannot know how these patients would have done if they had not received treatment. Validation of this score in a randomised controlled study is needed.

This scoring method has implications for the design of future stroke trials. It also underlines the arbitrary nature of use of rigid time windows as the basis for treatment decisions. This concept is supported by the observation from ECASS II of no significant difference in outcome between patients treated at 0–3 h and at 3–6 h.4 Definition of an arbitrary treatment window ignores evidence of wide variation among individuals in potentially salvageable brain tissue.7 Future “tissue-window” studies could assess how a systematic approach to early CT ischaemic change, such as ASPECTS, can be used to redefine time windows. For instance, a patient with a persistent deficit presenting after the defined time window but with a CT scan that shows only a small area of early ischaemic change (and therefore a high ASPECTS value) might be considered for thrombolytic therapy. In addition to determining trial eligibility, the ASPECTS system has the potential to be used as a surrogate endpoint to provide objective evidence in placebo-controlled neuroprotective trials.

Contributors

Philip Barber helped to design the study, collected and analysed the data, and cowrote the paper. Andrew Demchuk helped with the study, collected data, and cowrote the paper. Jinjin Zhang helped with the design and carried out the analyses. Alastair Buchan invented the ASPECTS scoring system, designed the study, helped to collect data, and cowrote the paper. These individuals represent the ASPECTS Study Group. The other members of the group are: J C Grotta (Stroke Program, University of Texas-Houston), M Hudson, R Sveick, W Hu, J N Scott, D Kaura (Department of Radiology, University of Calgary), S Rose (Community Health Sciences, University of Calgary), H Karbalai (Medical Student, University of Calgary).

References

